Dense Sets and Far Field Patterns in Acoustic Wave Propagation
- 1 September 1984
- journal article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Journal on Mathematical Analysis
- Vol. 15 (5) , 996-1006
- https://doi.org/10.1137/0515076
Abstract
We consider the Dirichlet, Neumann, and transmission boundary value problems corresponding to the scattering of an entire, time harmonic acoustic wave by a bounded obstacle in the plane. We first construct sets of solutions to these problems such that the restrictions of these solutions to the boundary $\partial \Omega $ of the scattering obstacle are dense in $L^2 (\partial \Omega )$. These results are then used to determine when the class of far field patterns corresponding to each of these scattering problems is dense or not dense in $L^2 [0,2\pi ]$.
Keywords
This publication has 8 references indexed in Scilit:
- The robin problem for the helmholtz equation as a singular perturbation problemNumerical Functional Analysis and Optimization, 1985
- THE UNIQUE SOLVABILITY OF THE NULL FIELD EQUATIONS OF ACOUSTICSThe Quarterly Journal of Mechanics and Applied Mathematics, 1983
- Runge’s Theorem and Far Field Patterns for the Impedance Boundary Value Problem in Acoustic Wave PropagationSIAM Journal on Mathematical Analysis, 1982
- Grenz- und Sprungrelationen für Potentiale mit quadrat-summierbarer FlächenbelegungResults in Mathematics, 1980
- Zwei Klassen vollständiger Funktionensysteme zur Behandlung der Randwertaufgaben der Schwingungsgleichung ΔU + k2U = 0Mathematical Methods in the Applied Sciences, 1980
- Ein verfahren zur losung von (△ + k2)u = 0 in aussengebietenApplicable Analysis, 1978
- The three-dimensional inverse scattering problem for the Helmholtz equationMathematical Proceedings of the Cambridge Philosophical Society, 1973
- ON THE INVERSE SCATTERING PROBLEM FOR AXIALLY SYMMETRIC SOLUTIONS OF THE HELMHOLTZ EQUATIONThe Quarterly Journal of Mathematics, 1971