Phosphorylation in isolated Chlamydomonas axonemes: a phosphoprotein may mediate the Ca2+-dependent photophobic response.
Open Access
- 1 November 1985
- journal article
- research article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 101 (5) , 1702-1712
- https://doi.org/10.1083/jcb.101.5.1702
Abstract
An in vitro system was devised for studying phosphorylation of Chlamydomonas reinhardtii axonemal proteins. Many of the polypeptides phosphorylated in this system could be identified as previously described axonemal components that are phosphorylated in vivo. The in vitro system apparently preserved the activities of diverse axonemal kinases without greatly altering the substrate specificity of the enzymes. The in vitro system was used to study the effect of calcium concentration on axonemal protein phosphorylation. Calcium has previously been demonstrated to initiate the axonemal reversal reaction of the photophobic response; the in vitro system made it possible to investigate the possibility that this calcium effect is mediated by protein phosphorylation. Calcium specifically altered the phosphorylation of only two axonemal proteins; the phosphorylation of an otherwise unidentified 85,000 Mr protein was repressed by calcium concentrations greater than or equal to 10(-6) M, while the phosphorylation of the previously identified 95,000 Mr protein b4 was stimulated by calcium at concentrations greater than 10(-6) M. Protein b4 is one of six polypeptides that are deficient in the mbo mutants, strains that do not exhibit a photophobic reversal reaction. Therefore, this calcium-stimulated phosphorylation may be involved in initiating the photophobic response. Neither calmodulin nor the C-kinase could be implicated in b4 phosphorylation. The calcium-dependent activation of the b4 kinase was not affected by several drugs that bind to and inhibit calmodulin, or by the addition of exogenous calmodulin. Activators and inhibitors of the calcium-phospholipid-dependent C kinase also had no effect on b4 phosphorylation.This publication has 53 references indexed in Scilit:
- Genetic and biochemical dissection of the eucaryotic flagellum.The Journal of cell biology, 1984
- Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas.The Journal of cell biology, 1984
- Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii.The Journal of cell biology, 1984
- Central-pair microtubular complex of Chlamydomonas flagella: polypeptide composition as revealed by analysis of mutants.The Journal of cell biology, 1981
- Inhibition by phenothiazine antipsychotic drugs of calcium-dependent phosphorylation of cerebral cortex proteins regulated by phospholipid or calmodulinLife Sciences, 1981
- Radial spokes of Chlamydomonas flagella: genetic analysis of assembly and function.The Journal of cell biology, 1981
- A backward swimming mutant of Chlamydomonas reinhardiiExperimental Cell Research, 1979
- Flagellar Coordination in Chlamydomonas reinhardtii : Isolation and Reactivation of the Flagellar ApparatusScience, 1975
- Characterization of dog cardiac microsomes Use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, (Na+ + K+)-activated ATPase and mitochondrial fragmentsBiochimica et Biophysica Acta (BBA) - Bioenergetics, 1970
- A Single-Gene Mutation of Chlamydomonas reinhardii Affecting Motility: A Genetic and Electron Microscope StudyNature, 1964