Plastic changes in the auditory cortex induced by intensive frequency discrimination training

Abstract
The slow auditory evoked (wave Nlm) and mismatch field (MMF) elicited by sequences of pure tones of 1000 Hz and deviant tones of 1050, 1010 and 1005 Hz were measured before, during and 3 weeks after subjects were trained at frequency discrimination for 15 sessions (over 3 weeks) using an odd-ball procedure. The task of the subject was to detect deviants differing by progressively smaller frequency shifts from the standard stimulus. Frequency discrimination improved rapidly in the first week and was followed by small but constant improvements thereafter. Nlm and MMF responses to the deviant stimuli increased in amplitude during training. This enhancement persisted until training was finished, but decreased 3 weeks later. The results suggest a plastic reorganization of the cortical representation for the trained frequencies.