Thermal Stresses in a Multilayered Anisotropic Medium

Abstract
A steady-state thermoelasticity problem of a multilayered anisotropic medium under the state of generalized plane deformation is considered in this paper. By utilizing the Fourier transform technique, the general solutions of thermoelasticity for layers with transversely isotropic, orthotropic, and monoclinic properties are derived. The complete solution of the entire layered medium is then obtained through introducing the thermal and mechanical boundary and layer interface conditions. This is accomplished via the flexibility/stiffness matrix method. As a numerical illustration, the distributions of temperature and thermal stresses in a laminated anisotropic slab subjected to a uniform surface temperature rise are presented for various stacking sequences of fiber-reinforced layers.

This publication has 0 references indexed in Scilit: