The ubiquitin ligase COP1 is a critical negative regulator of p53
Top Cited Papers
- 21 April 2004
- journal article
- research article
- Published by Springer Nature in Nature
- Vol. 429 (6987) , 86-92
- https://doi.org/10.1038/nature02514
Abstract
COP1 (constitutively photomorphogenic 1) is a RING-finger-containing protein that functions to repress plant photomorphogenesis, the light-mediated programme of plant development. Mutants of COP1 are constitutively photomorphogenic, and this has been attributed to their inability to negatively regulate the proteins LAF1 (ref. 1) and HY5 (ref. 2). The role of COP1 in mammalian cells is less well characterized3. Here we identify the tumour-suppressor protein p53 as a COP1-interacting protein. COP1 increases p53 turnover by targeting it for degradation by the proteasome in a ubiquitin-dependent fashion, independently of MDM2 or Pirh2, which are known to interact with and negatively regulate p53. Moreover, COP1 serves as an E3 ubiquitin ligase for p53 in vitro and in vivo, and inhibits p53-dependent transcription and apoptosis. Depletion of COP1 by short interfering RNA (siRNA) stabilizes p53 and arrests cells in the G1 phase of the cell cycle. Furthermore, we identify COP1 as a p53-inducible gene, and show that the depletion of COP1 and MDM2 by siRNA cooperatively sensitizes U2-OS cells to ionizing-radiation-induced cell death. Overall, these results indicate that COP1 is a critical negative regulator of p53 and represents a new pathway for maintaining p53 at low levels in unstressed cells.Keywords
This publication has 24 references indexed in Scilit:
- Human De-Etiolated-1 Regulates c-Jun by Assembling a CUL4A Ubiquitin LigaseScience, 2004
- Intrasteric regulation of MDM2Trends in Biochemical Sciences, 2003
- Characterization of Human Constitutive Photomorphogenesis Protein 1, a RING Finger Ubiquitin Ligase That Interacts with Jun Transcription Factors and Modulates Their Transcriptional ActivityJournal of Biological Chemistry, 2003
- DNA-dependent Acetylation of p53 by the Transcription Coactivator p300Published by Elsevier ,2003
- Pirh2, a p53-Induced Ubiquitin-Protein Ligase, Promotes p53 DegradationCell, 2003
- Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sitesOncogene, 2002
- The Conformationally Flexible S9–S10 Linker Region in the Core Domain of p53 Contains a Novel MDM2 Binding Site Whose Mutation Increases Ubiquitination of p53 in VivoPublished by Elsevier ,2002
- Regulation of p53 stability by Mdm2Nature, 1997
- Mdm2 promotes the rapid degradation of p53Nature, 1997
- Why don't plants get cancer?Nature, 1996