Time–Scale for Adjustment of Glaciers to Changes in Mass Balance

Abstract
The length of time TM over which a glacier responds to a prior change in climate is investigated with reference to the linearized theory of kinematic waves and to results from numerical models. We show the following: TM may in general be estimated by a volume time-scale describing the time required for a step change in mass balance to supply the volume difference between the initial and final steady states. The factor f in the classical estimate of τM = ƒl/u, where I is glacier length and u is terminus velocity, has a simple geometrical interpretation. Ft is the ratio of thickness change averaged over the full length I to the change at the terminus. Although both u and f relate to dynamic processes local to the terminus zone, the ratio f/u and, therefore, Tm are insensitive to details of the terminus dynamics, in contrast to conclusions derived from some simplified kinematic wave models. A more robust estimate of Tm independent of terminus dynamics is given by TM= h/(–b) where h is a thickness scale for the glacier and –b is the mass-balance rate (negative) at the terminus. We suggest that Tm for mountain glaciers can be substantially less than the 1O2–103 years commonly considered to be theoretically expected.

This publication has 22 references indexed in Scilit: