On the Computation of Bi-Normal Radial Error

Abstract
The Bi-normal density distribution function on a surface is represented by a position vector and covariance matrix. Its physical dimensions are described by the error ellipse. A generalized scalar is the radial or circular error which denotes the probability within a radius of the position. To compute the radial error probability (or probability circle) precisely, a non-trivial numerical integration is necessary. Simpler but less accurate conventions in common use are the Drms and CEP. The error ellipse semi-major axis is also sometimes applied to radial error. These three measures of radial error are subject to variations in probability as a function of the eccentricity of the distribution. The probability of a circle can be obtained simply and more accurately by the use of a third order polynomial.

This publication has 3 references indexed in Scilit: