Estimation of SW Flux Absorbed at the Surface from TOA Reflected Flux

Abstract
Measurements of radiation budgets, both at the top of the atmosphere (TOA) and at the surface, are essential to understanding the earth's climate. The TOA budgets can, in principle, be measured directly from satellites, while on a global scale surface budgets need to be deduced from TOA measurements. Most methods of inferring surface solar-radiation budgets from satellite measurements are applicable to particular scene types or geographic locations, and none is valid over highly reflective surfaces such as ice or snow. In addition, the majority of models require inputs such as cloud-optical thickness that are usually not known. Extensive radiative transfer modeling for different surface, atmospheric, and cloud conditions suggests a linear relationship between the TOA-reflected flux and the flux absorbed at the surface for a fixed solar zenith angle (SZA). The linear relationship is independent of cloud-optical thickness and surface albedo. Sensitivity tests show that the relationship depends stro... Abstract Measurements of radiation budgets, both at the top of the atmosphere (TOA) and at the surface, are essential to understanding the earth's climate. The TOA budgets can, in principle, be measured directly from satellites, while on a global scale surface budgets need to be deduced from TOA measurements. Most methods of inferring surface solar-radiation budgets from satellite measurements are applicable to particular scene types or geographic locations, and none is valid over highly reflective surfaces such as ice or snow. In addition, the majority of models require inputs such as cloud-optical thickness that are usually not known. Extensive radiative transfer modeling for different surface, atmospheric, and cloud conditions suggests a linear relationship between the TOA-reflected flux and the flux absorbed at the surface for a fixed solar zenith angle (SZA). The linear relationship is independent of cloud-optical thickness and surface albedo. Sensitivity tests show that the relationship depends stro...

This publication has 0 references indexed in Scilit: