Chemosensitivity prediction by transcriptional profiling
Top Cited Papers
- 11 September 2001
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 98 (19) , 10787-10792
- https://doi.org/10.1073/pnas.191368598
Abstract
In an effort to develop a genomics-based approach to the prediction of drug response, we have developed an algorithm for classification of cell line chemosensitivity based on gene expression profiles alone. Using oligonucleotide microarrays, the expression levels of 6,817 genes were measured in a panel of 60 human cancer cell lines (the NCI-60) for which the chemosensitivity profiles of thousands of chemical compounds have been determined. We sought to determine whether the gene expression signatures of untreated cells were sufficient for the prediction of chemosensitivity. Gene expression-based classifiers of sensitivity or resistance for 232 compounds were generated and then evaluated on independent sets of data. The classifiers were designed to be independent of the cells' tissue of origin. The accuracy of chemosensitivity prediction was considerably better than would be expected by chance. Eighty-eight of 232 expression-based classifiers performed accurately (with P < 0.05) on an independent test set, whereas only 12 of the 232 would be expected to do so by chance. These results suggest that at least for a subset of compounds genomic approaches to chemosensitivity prediction are feasible.Keywords
This publication has 15 references indexed in Scilit:
- Initial sequencing and analysis of the human genomeNature, 2001
- Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networksProceedings of the National Academy of Sciences, 2000
- Molecular classification of cutaneous malignant melanoma by gene expression profilingNature, 2000
- Multidrug resistance in haematological malignancies.2000
- Multidrug resistance in haematological malignanciesJournal of Internal Medicine, 2000
- A gene expression database for the molecular pharmacology of cancerNature Genetics, 2000
- Systematic variation in gene expression patterns in human cancer cell linesNature Genetics, 2000
- Distinct types of diffuse large B-cell lymphoma identified by gene expression profilingNature, 2000
- An Information-Intensive Approach to the Molecular Pharmacology of CancerScience, 1997
- Expression monitoring by hybridization to high-density oligonucleotide arraysNature Biotechnology, 1996