Abstract
Oscillatory flow in a turbulent boundary layer is modelled by using a coefficient of eddy viscosity whose value depends upon distance from a fixed boundary. A general oscillatory flow is prescribed beyond the layer, and the model is used to calculate the mass transport velocity induced by this within the layer. The result is investigated numerically for a representative distribution of eddy viscosity and the conclusions interpreted in terms of the mass transport induced by progressive and standing waves. For progressive waves, the limiting value of the mass transport velocity at the outer edge of the layer is the same as for laminar flow. For standing waves, the limiting value is reduced relative to its laminar value but, within the lowermost 25% of the layer, there is a drift which is reversed relative to the limiting value. This is considerably stronger than its counterpart in the laminar case and, in view of the greater thickness of the turbulent layer, it may make a dominant contribution to the net movement of loose bed material by a standing wave system.

This publication has 3 references indexed in Scilit: