Abstract
Using a constant tidal volume and ventilatory frequency, anesthetized piglets were ventilated with a new tidal volume ventilator. A short inspiratory time without a pause (10% of breathing cycle) was compared with a longer inspiratory time with a pause (33%) both with and without bronchial obstruction. Mechanics of ventilation, pulmonary ventilation, gas exchange, gas distribution, and lung perfusion were measured. The longer inspiratory time with a pause resulted in lower peak airway and end inspiratory pressures and a higher total compliance. Dead space/tidal volume ratio was reduced and the RQ was increased. While the cranial pulmonary fields were less well ventilated, the right caudal field was better ventilated. In the presence of bronchial obstruction, better alveolar ventilation was achieved when an end inspiratory pause was added. The results emphasize the importance of static end inspiratory tracheal conditions although the tidal volumes were kept unchanged.

This publication has 0 references indexed in Scilit: