Semiclassical Theory of Chaotic Quantum Transport

Abstract
We present a refined semiclassical approach to the Landauer conductance and Kubo conductivity of clean chaotic mesoscopic systems. We demonstrate for systems with uniformly hyperbolic dynamics that including off-diagonal contributions to double sums over classical paths gives a weak-localization correction in quantitative agreement with results from random matrix theory. We further discuss the magnetic-field dependence. This semiclassical treatment accounts for current conservation.
All Related Versions