SF2/ASF protein inhibits camptothecin‐induced DNA cleavage by human topoisomerase I

Abstract
A splicing factor SF2/ASF is a natural substrate for the kinase activity of human topoisomerase I. This study demonstrates that SF2/ASF inhibits DNA cleavage by human topoisomerase I induced by the anti-cancer agent camptothecin. The inhibition is independent of the phosphorylation status of SF2/ASF. We show that the inhibition did not result from binding of SF2/ASF to DNA that would hinder interactions between topoisomerase I and DNA. Neither it was a consequence of a loss of sensitivity of the enzyme to camptothecin. We provide evidence pointing to reduced formation of the cleavable complex in the presence of SF2/ASF as a primary reason for the inhibition. This effect of SF2/ASF is reflected by inhibition of DNA relaxation catalysed by topoisomerase I.