A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
- 31 March 2005
- journal article
- research article
- Published by Oxford University Press (OUP) in Bioinformatics
- Vol. 21 (12) , 2883-2890
- https://doi.org/10.1093/bioinformatics/bti415
Abstract
The explosion of microarray studies has promised to shed light on the temporal expression patterns of thousands of genes simultaneously. However, available methods are far from adequate in efficiently extracting useful information to aid in a greater understanding of transcriptional regulatory network. Biological systems have been modeled as dynamic systems for a long history, such as genetic networks and cell regulatory network. This study evaluated if the stochastic differential equation (SDE), which is prominent for modeling dynamic diffusion process originating from the irregular Brownian motion, can be applied in modeling the transcriptional regulatory network in Saccharomyces cerevisiae. To model the time-continuous gene-expression datasets, a model of SDE is applied to depict irregular patterns. Our goal is to fit a generalized linear model by combining putative regulators to estimate the transcriptional pattern of a target gene. Goodness-of-fit is evaluated by log-likelihood and Akaike Information Criterion. Moreover, estimations of the contribution of regulators and inference of transcriptional pattern are implemented by statistical approaches. Our SDE model is basic but the test results agree well with the observed dynamic expression patterns. It implies that advanced SDE model might be perfectly suited to portray transcriptional regulatory networks. The R code is available on request. cykao@csie.ntu.edu.tw http://www.csie.ntu.edu.tw/~b89x035/yeast/Keywords
This publication has 11 references indexed in Scilit:
- Transcriptional regulatory code of a eukaryotic genomeNature, 2004
- Quantitative characterization of the transcriptional regulatory network in the yeast cell cycleBioinformatics, 2004
- The yeast cell-cycle network is robustly designedProceedings of the National Academy of Sciences, 2004
- Transcriptional Regulatory Networks in Saccharomyces cerevisiaeScience, 2002
- Regulatory element detection using correlation with expressionNature Genetics, 2001
- Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBFNature, 2001
- Determination of X-Chromosome Inactivation Status Using X-Linked Expressed Polymorphisms Identified by Database SearchingGenomics, 2000
- Systematic determination of genetic network architectureNature Genetics, 1999
- Cluster analysis and display of genome-wide expression patternsProceedings of the National Academy of Sciences, 1998
- Comprehensive Identification of Cell Cycle–regulated Genes of the YeastSaccharomyces cerevisiaeby Microarray HybridizationMolecular Biology of the Cell, 1998