Abstract
Airblast atomization of viscous Newtonian liquids is carried out using coaxial twin-fluid jet atomizers of different nozzle sizes, slit angles, and slit cross sections for air flow. As the atomizing air swirls downstream along the liquid jet, waves form on the surface of the liquid jet. As a result, the liquid jet sheds ligaments which rapidly collapse into small drops. The atomized drop sizes can be described in terms of three dimensionless groups, namely, liquid-to-air mass ratio (M˙L/M˙A), Weber number (We), and Ohnesorge number (Z) in simple forms whose exponents and coefficients are determined by the best least square fit to the experimental results using the generalized inverse method. In addition, we found that the atomized drop sizes substantially decrease as the atomizing air pressure exceeds a threshold value which varies from less than 170 to 220 kPa depending on the nozzle size and the slit cross section.

This publication has 0 references indexed in Scilit: