Radio frequency magnetic field mapping of a 3 Tesla birdcage coil: Experimental and theoretical dependence on sample properties

Abstract
The RF B1 distribution was studied, theoretically and experimentally, in phantoms and in the head of volunteers using a 3 T MRI system equipped with a birdcage coil. Agreement between numerical simulation and experiment demonstrates that B1 distortion at high field can be explained with 3D full‐Maxwell calculations. It was found that the B1 distribution in the transverse plane is strongly dependent on the dielectric properties of the sample. We show that this is a consequence of RF penetration effects combined with RF standing wave effects. In contrast, along the birdcage coil z‐axis the B1 distribution is determined mainly by the coil geometry. In the transverse plane, the region of B1 uniformity (within 10% of the maximum) was 15 cm with oil, 6 cm with distilled water, 11 cm with saline, and 10 cm in the head. Along z the B1 uniformity was 9 cm with phantoms and 7 cm in the head. Magn Reson Med 46:379–385, 2001.