Interaction of the ΦHSIC Virus with Its Host: Lysogeny or Pseudolysogeny?

Abstract
The marine phage ΦHSIC has been previously reported to enter into a lysogenic relationship with its host, HSIC, identified asListonella pelagia. This phage produces a variety of plaques on its host, including turbid and haloed plaques, from which lysogens were previously isolated. These lysogens were unstable during long-term storage at −80° C and were lost. When HSIC was reinfected with phage ΦHSIC, pseudolysogen-like interactions between the phage and its host were observed. The cells (termed HSIC-2 or HSIC-2e) produced high viral titers (1011ml−1) in the absence of inoculating phage and yet reached culture densities of nearly 109 ml−1. Prophages were not induced by mitomycin C or the polyaromatic hydrocarbon naphthalene in cells harboring such infections. However, such cells were homoimmune to superinfection. Colonies hybridized strongly with a gene probe from a 100-bp fragment of the ΦHSIC genome, while the host did not. Analysis of chromosomal DNA preparations suggested the presence of a chromosomally integrated prophage. Phage adsorption experiments suggested that HSIC-2 was adsorption impaired. Because of the chromosomal prophage integration and homoimmunity, we interpret these results to indicate that ΦHSIC establishes a lysogenic relationship with its host that involves an extremely high level of spontaneous induction. This could be caused by a weak repressor of phage production. Additionally, poor phage adsorption of HSIC-2 compared to the wild type probably helped maintain this pseudolysogen-like relationship. In many ways, pseudolysogenic phage-host interactions may provide a paradigm for phage-host interactions in the marine environment.