Substrate‐Induced Dissociation of Glycerol‐3‐phosphate Dehydrogenase and Its Complex Formation with Fructose‐bisphosphate Aldolase

Abstract
A 3-fold decrease in specific activity of glycerol-3-phosphate dehydrogenase was found on going from 800 nM to 10 nM enzyme concentration. According to ultracentrifugal analyses the dimeric glycerol-3-phosphate dehydrogenase (MW 78,000) dissociates into monomers in the equilibrium mixture of its substrates and products. The concentration-dependent decrease in the specific activity is interpreted as a consequence of subunit dissociation and the estimated dissociation constants are 0.7 .mu.M and 3.5 .mu.M at 38.degree. C and 20.degree. C, respectively. According to active-enzyme-band centrifugation experiments and kinetic analysis aldolase forms a complex with glycerol-3-phosphate dehydrogenase and this complex formation influences the specific activity of the dehydrogenase. The interaction between glycerol-3-phosphate dehydrogenase and aldolase can provide a regulatory mechanism at the branching point of glycolytic and lipid metabolic pathways.