Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities
Open Access
- 1 June 1996
- journal article
- Published by American Meteorological Society in Journal of the Atmospheric Sciences
- Vol. 53 (12) , 1710-1723
- https://doi.org/10.1175/1520-0469(1996)053<1710:uomaad>2.0.co;2
Abstract
Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived. A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Be... Abstract Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived. A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Be...Keywords
This publication has 0 references indexed in Scilit: