Generalized Additive Models: Some Applications
- 1 June 1987
- journal article
- research article
- Published by JSTOR in Journal of the American Statistical Association
- Vol. 82 (398) , 371
- https://doi.org/10.2307/2289439
Abstract
Generalized additive models have the form η(x) = α + σ fj (x j ), where η might be the regression function in a multiple regression or the logistic transformation of the posterior probability Pr(y = 1 | x) in a logistic regression. In fact, these models generalize the whole family of generalized linear models η(x) = β′x, where η(x) = g(μ(x)) is some transformation of the regression function. We use the local scoring algorithm to estimate the functions fj (xj ) nonparametrically, using a scatterplot smoother as a building block. We demonstrate the models in two different analyses: a nonparametric analysis of covariance and a logistic regression. The procedure can be used as a diagnostic tool for identifying parametric transformations of the covariates in a standard linear analysis. A variety of inferential tools have been developed to aid the analyst in assessing the relevance and significance of the estimated functions: these include confidence curves, degrees of freedom estimates, and approximat...Keywords
This publication has 0 references indexed in Scilit: