Abstract
Simulating asynchronous multiple-loop networks is commonly considered a difficult task for parallel programming. Two examples of asynchronous multiple-loop networks are presented in this article: a stylized queuing system and an Ising model. In both cases, the network is an n × n grid on a torus and includes at least an order of n 2 feedback loops. A new distributed simulation algorithm is demonstrated on these two examples. The algorithm combines three elements: (1) the bounded lag restriction; (2) minimum propagation delays; and (3) the so-called opaque periods. We prove that if N processing elements (PEs) execute the algorithm in parallel and the simulated system exhibits sufficient density of events, then, on average, processing one event would require O (log N ) instructions of one PE. Experiments on a shared memory MIMD bus computer (Sequent's Balance) and on a SIMD computer (Connection Machine) show speed-ups greater than 16 on 25 PEs of a Balance and greater than1900 on 2 14 PEs of a Connection Machine.

This publication has 15 references indexed in Scilit: