Folding Mechanism of Ketosteroid Isomerase from Comamonas testosteroni
- 24 March 2001
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 40 (16) , 5011-5017
- https://doi.org/10.1021/bi0019139
Abstract
Ketosteroid isomerase (KSI) from Comamonas testosteroni is a homodimeric enzyme with 125 amino acids in each monomer catalyzing the allylic isomerization reaction at rates comparable to the diffusion limit. Kinetic analysis of KSI refolding has been carried out to understand its folding mechanism. The refolding process as monitored by fluorescence change revealed that the process consists of three steps with a unimolecular fast, a bimolecular intermediate, and most likely unimolecular slow phases. The fast refolding step might involve the formation of structured monomers with hydrophobic surfaces that seem to have a high binding capacity for the amphipathic dye 8-anilino-1-naphthalenesulfonate. During the refolding process, KSI also generated a state that can bind equilenin, a reaction intermediate analogue, at a very early stage. These observations suggest that the KSI folding might be driven by the formation of the apolar active-site cavity while exposing hydrophobic surfaces. Since the monomeric folding intermediate may contain more than 83% of the native secondary structures as revealed previously, it is nativelike taking on most of the properties of the native protein. Urea-dependence analysis of refolding revealed the existence of folding intermediates for both the intermediate and slow steps. These steps were accelerated by cyclophilin A, a prolyl isomerase, suggesting the involvement of a cis-trans isomerization as a rate-limiting step. Taken together, we suggest that KSI folds into a monomeric intermediate, which has nativelike secondary structure, an apolar active site, and exposed hydrophobic surface, followed by dimerization and prolyl isomerizations to complete the folding.Keywords
This publication has 7 references indexed in Scilit:
- Crystal Structure and Enzyme Mechanism of Δ5-3-Ketosteroid Isomerase from Pseudomonas testosteroni,Biochemistry, 1998
- High-Resolution Crystal Structures of Δ5-3-Ketosteroid Isomerase with and without a Reaction Intermediate AnalogueBiochemistry, 1997
- The 1.6 Å Resolution Crystal Structure of Nuclear Transport Factor 2 (NTF2)Journal of Molecular Biology, 1996
- MOLSCRIPT: a program to produce both detailed and schematic plots of protein structuresJournal of Applied Crystallography, 1991
- Evidence for a molten globule state as a general intermediate in protein foldingFEBS Letters, 1990
- Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residuesBiochemistry, 1975
- Refolding of triose phosphate isomeraseBiochemical Journal, 1973