Abstract
Heavy-quark effective theory (HQET) is applied to lattice QCD with Wilson fermions at fixed lattice spacing a. This description is possible because heavy-quark symmetries are respected. It is desirable because the ultraviolet cutoff 1/a in current numerical work and the heavy-quark mass mQ are comparable. Effects of both short distances a and 1/mQ are captured fully into coefficient functions, which multiply the operators of the usual HQET. Standard tools of HQET are used to develop heavy-quark expansions of lattice observables and, thus, to propagate heavy-quark discretization errors. Three explicit examples are given: namely, the mass, decay constant, and semileptonic form factors of heavy-light mesons.