Inhibition of protein synthesis by streptogramins and related antibiotics

Abstract
The streptogramins and related antibiotics (the lincosamides and macrolides) (MLS) are important inhibitors of bacterial protein synthesis. The key reaction in this process is the formation of a peptide bond between the growing peptide chain (peptidyl-tRNA) linked to the P-site of the 50S ribosome and aminoacyl-tRNA linked to the A site. This reaction is catalysed by the peptidyl transferase catalytic centre of the 50S ribosome. Type A and B streptogramins in particular have been shown to block this reaction through the inhibition of substrate attachment to the A and P sites and inhibition of peptide chain elongation. Synergy between type A and B components results from conformational changes imposed upon the peptidyl transferase centre by type A compounds and by inhibition of both early and late stages of protein synthesis. The conformational change increases ribosomal affinity for type B streptogramins. Microbial resistance to the MLSB antibiotics is largely attributable to mutations of rRNA bases, producing conformational changes in the peptidyl transferase centre. This can result in resistance to a single inhibitor or to a group of antibiotics (MLSB). The activity of type A streptogramin is retained thus explaining the improved inhibitory action of the combined streptogramins against macrolide and lincosamide-resistant strains. However, the development of resistance to the streptogramins may be less of a problem because of the synergic effect of type A and B compounds which has also been demonstrated in strains resistant to MLSB i.e., high level resistance to the combined streptogramins is only likely when type A streptogramin resistance determinants are present along with type B streptogramin resistance determinants.

This publication has 0 references indexed in Scilit: