Effect of branched-chain amino acids on muscle atrophy in cancer cachexia
- 12 September 2007
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 407 (1) , 113-120
- https://doi.org/10.1042/bj20070651
Abstract
In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stranded-RNA-dependent protein kinase) and eIF2α (eukaryotic initiation factor 2α) in skeletal muscle of mice bearing the MAC16 tumour, due to an increased expression of PP1 (protein phosphatase 1). Weight loss in mice bearing the MAC16 tumour was associated with an increased amount of eIF4E bound to its binding protein 4E-BP1 (eIF4E-binding protein 1), and a progressive decrease in the active eIF4G–eIF4E complex due to hypophosphorylation of 4E-BP1. This may be due to a reduction in the phosphorylation of mTOR (mammalian target of rapamycin), which may also be responsible for the decreased phosphorylation of p70S6k (70 kDa ribosomal S6 kinase). There was also a 5-fold increase in the phosphorylation of eEF2 (eukaryotic elongation factor 2), which would also decrease protein synthesis through a decrease in translation elongation. Treatment with leucine increased phosphorylation of mTOR and p70S6k, caused hyperphosphorylation of 4E-BP1, reduced the amount of 4E-BP1 associated with eIF4E and caused an increase in the eIF4G–eIF4E complex, together with a reduction in phosphorylation of eEF2. These changes would be expected to increase protein synthesis, whereas a reduction in the activation of PKR would be expected to attenuate the increased protein degradation.Keywords
This publication has 42 references indexed in Scilit:
- Mechanism of attenuation of angiotensin-II-induced protein degradation by insulin-like growth factor-I (IGF-I)Cellular Signalling, 2007
- Attenuation of muscle atrophy in a murine model of cachexia by inhibition of the dsRNA-dependent protein kinaseBritish Journal of Cancer, 2007
- Leucine-rich diet alters the eukaryotic translation initiation factors expression in skeletal muscle of tumour-bearing ratsBMC Cancer, 2007
- Leucine supplementation improves muscle protein synthesis in elderly men independently of hyperaminoacidaemiaThe Journal of Physiology, 2006
- Increased expression of proteasome subunits in skeletal muscle of cancer patients with weight lossThe International Journal of Biochemistry & Cell Biology, 2005
- A Selective Inhibitor of eIF2α Dephosphorylation Protects Cells from ER StressScience, 2005
- The Direct Binding of the Catalytic Subunit of Protein Phosphatase 1 to the PKR Protein Kinase Is Necessary but Not Sufficient for Inactivation and Disruption of Enzyme Dimer FormationPublished by Elsevier ,2002
- Ribosomal S6 Kinase Signaling and the Control of TranslationExperimental Cell Research, 1999
- Initiation of Protein Synthesis in Eukaryotic CellsEuropean Journal of Biochemistry, 1996
- Functional properties of phosphorylated elongation factor 2European Journal of Biochemistry, 1990