Number Theory and the Magnetic Properties of an Electron Gas
- 1 November 1952
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 88 (3) , 438-451
- https://doi.org/10.1103/physrev.88.438
Abstract
Theorems involving the correction terms of lattice point problems in the theory of numbers are interpreted to derive the orders of magnitude of the oscillatory (de Haas-van Alphen effect) and non-oscillatory (Landau and surface diamagnetism) terms in the magnetic moment of a Fermi gas in a finite cylindrical container. The results are valid for systems from atomic dimensions up, and all values of the magnetic field. The different types of moment are different from strong and weak fields, and may depend, for small particles, on the nature of the surface potential at the walls of the container. The applicability of the method to physical problems, and the difficulties associated with statistical mechanical problems involving magnetic fields are discussed.Keywords
This publication has 20 references indexed in Scilit:
- The Diamagnetism of Free Electrons in Finite SystemsPhysical Review B, 1951
- The Perfect Diamagnetism of Free Electrons with Application to SuperconductivityPhysical Review B, 1951
- Diamagnetismus des Elektronengases. IIIThe European Physical Journal A, 1939
- The magnetic properties of bismuth, III. Further measurements on the de Haas-van Alphen effectProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1939
- On the diamagnetic susceptibility of bismuthProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1938
- The Nature of the Superconducting State. IIPhysical Review B, 1937
- Zur Theorie des Diamagnetismus von Leitungselektronen. II Starke MagnetfelderThe European Physical Journal A, 1933
- Der Diamagnetismus von freien ElektronenThe European Physical Journal A, 1931
- Diamagnetismus der MetalleThe European Physical Journal A, 1930
- Problèmes de la théorie électronique du magnétismeJournal de Physique et le Radium, 1921