Nonlinear waves in compacting media

Abstract
An investigation of the mathematical model of a compacting medium proposed by McKenzie (1984) for the purpose of understanding the migration and segregation of melts in the Earth is presented. The numerical observation that the governing equations admit solutions in the form of nonlinear one-dimensional waves of permanent shape is confirmed analytically. The properties of these solitary waves are presented, namely phase speed as a function of melt content, nonlinear interaction and conservation quantities. The information at hand suggests that these waves are not solitons.

This publication has 5 references indexed in Scilit: