Partial chemical equilibrium in fluid dynamics
- 1 April 1980
- journal article
- Published by AIP Publishing in Physics of Fluids
- Vol. 23 (4) , 675-680
- https://doi.org/10.1063/1.863052
Abstract
An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates ω̇s for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the ω̇s are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the ω̇s. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly.Keywords
This publication has 6 references indexed in Scilit:
- Numerical methods for solving the chemical mass action equilibrium problemThe Journal of Chemical Physics, 1976
- DERIVATION OF HYDRODYNAMIC EQUATIONS FROM THE BOLTZMANN EQUATIONPublished by Elsevier ,1969
- A general corrective procedure for the numerical solution of initial-value problemsJournal of Computational Physics, 1967
- Atomic recombination in a hypersonic wind-tunnel nozzleJournal of Fluid Mechanics, 1959
- The Macroscopic Equations of TransportThe Journal of Physical Chemistry, 1952
- Integration of Stiff EquationsProceedings of the National Academy of Sciences, 1952