Electrically injected cavity polaritons

Abstract
We have realised a semiconductor quantum structure that produces electroluminescence while operating in the light-matter strong coupling regime. The mid-infrared light emitting device is composed of a quantum cascade structure embedded in a planar microcavity, based on the GaAs/AlGaAs material system. At zero bias, the structure is characterised using reflectivity measurements which show, up to room temperature, a wide polariton anticrossing between an intersubband transition and the resonant cavity photon mode. Under electrical injection the spectral features of the emitted light change drastically, as electrons are resonantly injected in a reduced part of the polariton branches. Our experiment demonstrates that electrons can be selectively injected into polariton states up to room temperature.

This publication has 0 references indexed in Scilit: