Gigahertz Electron Spin Manipulation Using Voltage-Controlled g-Tensor Modulation

Abstract
We present a scheme that enables gigahertz-bandwidth three-dimensional control of electron spins in a semiconductor heterostructure with the use of a single voltage signal. Microwave modulation of the Landé g tensor produces frequency-modulated electron spin precession. Driving at the Larmor frequency results in g-tensor modulation resonance, which is functionally equivalent to electron spin resonance but without the use of time-dependent magnetic fields. These results provide proof of the concept that quantum spin information can be locally manipulated with the use of high-speed electrical circuits.