Role of CD18-ICAM-1 in the entrapment of stimulated leukocytes in alveolar capillaries of perfused rat lungs

Abstract
This study aimed to examine the behavior of stimulated leukocytes in the pulmonary microcirculation. The leukocyte-endothelium interaction was visualized under physiological shear rates in perfused rat lungs using high-speed confocal laser video microscopy. Leukocytes labeled with carboxyfluorescein were stimulated with cytokine-induced neutrophil chemoattractant (CINC/gro), which caused L-selectin shedding and inverse upregulation of CD18. Neither unstimulated nor stimulated leukocytes exhibited rolling in either pulmonary arterioles or venules, whereas both were sequestered in capillaries. Approximately 50% of stimulated leukocytes showed a transient cessation of movement in pulmonary capillaries. The CINC/gro stimulation, which inhibited leukocyte rolling and adhesion to mesenteric venules, reduced leukocyte velocity and increased leukocytes in pulmonary capillaries. Pretreatment with monoclonal antibodies against intercellular adhesion molecule-1 (ICAM-1) or CD18 attenuated these changes. Confocal microfluorography revealed constitutive expression of ICAM-1 not only in venules but also abundantly in capillary networks. These results suggest that selectin-independent, CD18-ICAM-1-dependent capillary sequestration is one of the major mechanisms by which activated leukocytes accumulate in the lungs.

This publication has 29 references indexed in Scilit: