CANDYS/QA—A SOFTWARE SYSTEM FOR QUALITATIVE ANALYSIS OF NONLINEAR DYNAMICAL SYSTEMS

Abstract
Numerical methods are often needed if bifurcation phenomena in nonlinear dynamical systems are studied. In this paper the software system CANDYS/QA for numerical qualitative analysis is presented. A wide class of problems is treated: computation of invariant sets (e.g., steady-states and periodic orbits), path-following (continuation) of such sets, and the related bifurcation phenomena. The following bifurcation situations are detected and the corresponding critical points are calculated during path-following: turning, bifurcation, Hopf bifurcation, period-doubling, torus bifurcation points (one-parameter problems) as well as cusp and Takens-Bogdanov points (two-parameter problems). A number of newly developed methods (e.g., for computation of the Poincaré map) as well as algorithms from the literature are described to demonstrate the whole procedure of a qualitative analysis by numerical means. An illustrative example analyzed by CANDYS/QA is included.

This publication has 0 references indexed in Scilit: