Molecular Subsets in the Gene Expression Signatures of Scleroderma Skin
Top Cited Papers
Open Access
- 16 July 2008
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 3 (7) , e2696
- https://doi.org/10.1371/journal.pone.0002696
Abstract
Scleroderma is a clinically heterogeneous disease with a complex phenotype. The disease is characterized by vascular dysfunction, tissue fibrosis, internal organ dysfunction, and immune dysfunction resulting in autoantibody production. We analyzed the genome-wide patterns of gene expression with DNA microarrays in skin biopsies from distinct scleroderma subsets including 17 patients with systemic sclerosis (SSc) with diffuse scleroderma (dSSc), 7 patients with SSc with limited scleroderma (lSSc), 3 patients with morphea, and 6 healthy controls. 61 skin biopsies were analyzed in a total of 75 microarray hybridizations. Analysis by hierarchical clustering demonstrates nearly identical patterns of gene expression in 17 out of 22 of the forearm and back skin pairs of SSc patients. Using this property of the gene expression, we selected a set of ‘intrinsic’ genes and analyzed the inherent data-driven groupings. Distinct patterns of gene expression separate patients with dSSc from those with lSSc and both are easily distinguished from normal controls. Our data show three distinct patient groups among the patients with dSSc and two groups among patients with lSSc. Each group can be distinguished by unique gene expression signatures indicative of proliferating cells, immune infiltrates and a fibrotic program. The intrinsic groups are statistically significant (p<0.001) and each has been mapped to clinical covariates of modified Rodnan skin score, interstitial lung disease, gastrointestinal involvement, digital ulcers, Raynaud's phenomenon and disease duration. We report a 177-gene signature that is associated with severity of skin disease in dSSc. Genome-wide gene expression profiling of skin biopsies demonstrates that the heterogeneity in scleroderma can be measured quantitatively with DNA microarrays. The diversity in gene expression demonstrates multiple distinct gene expression programs in the skin of patients with scleroderma.Keywords
This publication has 89 references indexed in Scilit:
- Identification of noninvasive imaging surrogates for brain tumor gene-expression modulesProceedings of the National Academy of Sciences, 2008
- Cthrc1 Is a Novel Inhibitor of Transforming Growth Factor-β Signaling and Neointimal Lesion FormationCirculation Research, 2007
- GenePattern 2.0Nature Genetics, 2006
- Common markers of proliferationNature Reviews Cancer, 2006
- Repeated observation of breast tumor subtypes in independent gene expression data setsProceedings of the National Academy of Sciences, 2003
- Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT MethodMethods, 2001
- Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implicationsProceedings of the National Academy of Sciences, 2001
- Significance analysis of microarrays applied to the ionizing radiation responseProceedings of the National Academy of Sciences, 2001
- Systematic variation in gene expression patterns in human cancer cell linesNature Genetics, 2000
- Distinct types of diffuse large B-cell lymphoma identified by gene expression profilingNature, 2000