Volumes of Vector Fields on Spheres

Abstract
In this paper we study the problem: What is the unit vector field of smallest volume on an odd-dimensional sphere? We exhibit on each sphere a unit vector field with singularity which has exceptionally small volume on spheres of dimension greater than four. We conjecture that this volume is the infimum for volumes of bona fide unit vector fields, and is only achieved by the singular vector field.

This publication has 3 references indexed in Scilit: