Refractoriness to Antivascular Endothelial Growth Factor Treatment: Role of Myeloid Cells

Abstract
CD11b+Gr1+ cells, which include neutrophils, macrophages, and myeloid-derived suppressor cells, have been shown to contribute to tumor angiogenesis. Recently, we found that accumulation of CD11b+Gr1+ in tumors renders them refractory to angiogenic blockade by vascular endothelial growth factor (VEGF) antibodies. This effect was traced to a pathway of CD11b+Gr1+–mediated angiogenesis that is, at least in part, driven by the secreted protein Bv8, which is up-regulated by the important myeloid growth factor granulocyte colony-stimulating factor (G-CSF). Thus, G-CSF may promote tumor angiogenesis through a Bv8-dependent pathway that bypasses VEGF and renders tumors refractory to anti-VEGF therapy. [Cancer Res 2008;68(14):5501–4]