In vivo adenoviral transfer of sorcin reverses cardiac contractile abnormalities of diabetic cardiomyopathy

Abstract
In many types of heart failure cardiac myocyte Ca2+ handling is abnormal because of downregulation of key Ca2+-handling proteins like sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a and ryanodine receptor (RyR)2. The alteration in SERCA2a and RyR2 expression results in altered cytosolic Ca2+ transients, leading to abnormal contraction. Sorcin is an EF-hand protein that confers the property of caffeine-activated intracellular Ca2+ release in nonmuscle cells by interacting with RyR2. To determine whether sorcin could improve the contractile function of the heart, we overexpressed sorcin in the heart of either normal or diabetic mice and in adult rat cardiomyocytes with an adenoviral gene transfer approach. Sorcin overexpression was associated with an increase in cardiac contractility of the normal heart and dramatically rescued the abnormal contractile function of the diabetic heart. These effects could be attributed to an improvement of the Ca2+ transients found in the cardiomyocyte after sorcin overexpression. Viral vector-mediated delivery of sorcin to cardiac myocytes is beneficial, resulting in improved contractile function in diabetic cardiomyopathy.

This publication has 27 references indexed in Scilit: