Cloning of genetic loci involved in endoprotease activity in Streptomyces lividans 66: a novel neutral protease gene with an adjacent divergent putative regulatory gene

Abstract
A skimmed-milk clearing assay was used to identify, in a multicopy Streptomyces lividans 66 genomic library, DNA fragments that lead to increased expression of protease activity in S. lividans 66. Three independent loci were identified. The majority class (slpA, which represented 68 of 71 clones) produced large zones of clearing. Two other classes (designated slpB and slpC) showed smaller zones than slpA. Subcloning and deletion analysis of the slpA locus delineated the relevant DNA to within a 2.5 kilobase pair fragment. DNA sequence analysis revealed a structural gene associated with the appearance of an extracellular protein in the culture medium. The derived amino acid sequence indicated the presence of a zinc-binding motif, which was previously noted to be characteristic of metalloprotease enzymes. However, the relatively small size of the protein (apparent molecular weight 20 000 – 24 000) suggests that it represents a novel class of neutral proteases distinct from the thermolysin-type enzymes. An adjacent divergent open reading frame was identified and shown to cause a significant increase in protease activity when present together with the protease structural gene on a multicopy plasmid in S. lividans 66. The derived amino acid sequence of this open reading frame showed homology with previously characterized regulatory proteins of the LysR family of transcriptional regulator proteins. Key words: Streptomyces, extracellular proteases, putative transcriptional regulator.

This publication has 0 references indexed in Scilit: