Histone arginine methylation and its dynamic regulation

Abstract
Methylation of histones by protein arginine methyltransferases (PRMTs) is increasingly being found to play an important and dynamic role in gene regulation. In mammals, PRMT1- and CARM1-catalyzed histone asymmetric dimethyl-arginine is involved in gene activation while PRMT5-catalyzed histone symmetric dimethyl-arginine is associated with gene repression. Insight into mechanisms by which histone arginine methylation can be dynamically regulated comes from recent reports demonstrating that conversion of histone methylarginine residues to citrulline by peptidylarginine deiminase 4 (PADI4) leads to transcriptional repression. While the downstream cellular effects of histone arginine methylation remain poorly understood, recent findings indicate that protein arginine methylation, in general, is required for mammalian development and is also likely important for cellular proliferation and differentiation. Given the surge of interest in histone arginine methylation, this review article will focus on recent progress in this area.

This publication has 0 references indexed in Scilit: