Carrier loss and luminescence degradation in green-light-emitting InGaN quantum wells with micron-scale indium clusters

Abstract
Influence of the size of indium clusters on optical properties of green-light-emitting InGaN quantum wells (QWs) was investigated by photoluminescence (PL), cathodoluminescence, PL excitation, and time-resolved PL techniques. Low luminescence efficiency was observed for green-light-emitting InGaN QWs with micron-sized indium clusters, in contrast to the case of InGaN QWs with submicron-sized small indium segregation. Both the thermal activation energy and the carrier lifetime dramatically decreased, while a large Stokes-like shift between absorption edge and PL peak energy was still observed for the InGaN QWs with micron-sized indium clusters. These facts indicate that the effective potential barrier between radiative and nonradiative channels (thus effective carrier localization) rapidly decreases due to the formation of micron-sized large indium clusters possessing a number of nonradiative centers, leading to significant luminescence degradation.