Abstract
This experimental investigation determines the effect of the various parameters of a subsonic axisymmetric jet upon a fast chemical reaction between ozone contained dilutely in the primary jet and diluted nitric oxide being entrained from the ambient fluid. Radial profiles of ozone densities are determined from absorption measurements of a thin beam of ultraviolet light which is probed across the jet. Data have been obtained for five jet Reynolds numbers between 4000 and 32 000 to reflect variations in both gas density and nozzle velocity; the data confirm Reynolds number independence of reactant concentration profiles to within experimental accuracy. When the non-dimensional chemical reaction rate exceeds a determined value, the ozone profiles are observed to be independent of further increases in the reaction speed. The measured ozone concentration profiles are related directly to the molecular-scale mixing in the jet and to mixing intermittency in the mixing zone in particular.