β-Adrenergic Receptors, Glucagon Receptors, and Their Relationship to Adenylate Cyclase in Rat Liver during Aging

Abstract
The .beta.-adrenergic and glucagon receptor-binding capacities in rat livers from 6-27 months of age were measured to investigate the mechanism of a previously observed rise in .beta.-adrenergic stimulated adenylate cyclase with increasing age. There was no concomitant increase in glucagon-stimulated adenylate cyclase. In the present study neither glucagon-binding capacity nor glucagon-stimulated adenylate cyclase changed with age. In contrast, the .beta.-adrenergic receptor capacity, measured in the same membranes by [125I]iodopindolol binding, increased nearly 3-fold from 6.6 .+-. 0.6 fmol/mg at 6 months to 19.1 .+-. 3.3 fmol/ mg at 18-19 months. The increase was directly proportional to the maximum isoproterenol-stimulated adenylate cyclase activity in livers of rats up to 19 months of age. By 24-27 months the binding capacity had increased to 24.9 .+-. 3.3 fmol/mg, but there was no further increase in adenylate cyclase activity. Thus, there appeared to be a .beta.-receptor-adenylate cyclase uncoupling in livers from the senescent animals (25-27 months). The defect could not be demonstrated by studies examining isoproterenol competition of [125I]iodopindolol from agonist-induced high affinity sites on the membranes, a procedure that examines receptor-Ns protein coupling. Activation of adenylate cyclase by the nonhormonal stimulators F- and forskolin did not change with age, indicating that the catalytic unit was not a limiting factor. Since the relationship between the glucagon receptor and adenylate cyclase also remained unaltered, the uncoupling apparently lies in an alteration of the interaction between the .beta.-adrenergic receptor and the guanine nucleotide-sensitive N8 protein.