Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression)
Open Access
- 1 May 1994
- journal article
- Published by Oxford University Press (OUP) in Plant Physiology
- Vol. 105 (1) , 405-413
- https://doi.org/10.1104/pp.105.1.405
Abstract
Tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) fruit, at five stages of development, have been analyzed for their carotenoid and chlorophyll (Chl) contents, in vitro activities of phytoene synthase, phytoene desaturase, and lycopene cyclase, as well as expression of the phytoene synthase (Psy) and phytoene desaturase (Pds) genes. During ripening, the total carotenoids increased with a concomitant decrease in Chl. Although the highest carotenoid content (consisting mainly of lycopene and [beta]-carotene) was found in ripe fruit, the greatest carotenogenic enzymic activities were found in green fruit. Phytoene synthase was located in the plastid stroma, whereas the metabolism of phytoene was associated with plastid membranes during all stages of fruit development. The in vitro products of phytoene desaturation altered from being predominantly phytofluence and [zeta]-carotene in chloroplasts to becoming mainly lycopene in chromoplasts. The expression of Psy was detected in breaker and ripe fruit, as well as flowers, but was not detectable by northern blot analysis in leaves or green fruits. The Pds gene transcript was barely detectable in green fruit and leaves but was expressed in flowers and breaker fruit. These results suggest that transcription of Psy and Pds is regulated developmentally, with expression being considerably elevated in chromoplast-containing tissues. Antiserum to the Synechococcus phytoene synthase cross-reacted with phytoene synthase of green fruit only on western blots and not with the enzyme from ripe fruit. In contrast, a monoclonal antibody to the Psy gene product only cross-reacted with phytoene synthase from ripe fruit. The enzymes from green and ripe fruit had different molecular masses of 42 and 38 kD, respectively. The absence of detectable Psy and Pds mRNA in green tissues using northern blot analyses, despite high levels of phytoene synthase and desaturase activity, lends support to the hypothesis of divergent genes encoding these enzymes.Keywords
This publication has 16 references indexed in Scilit:
- Regulation of carotenoid biosynthesis during tomato development.Plant Cell, 1993
- A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway.Journal of Biological Chemistry, 1992
- Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzymeFEBS Letters, 1992
- Identification of a cDNA for the plastid‐located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripeningThe Plant Journal, 1992
- Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoesPlant Molecular Biology, 1990
- Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening.Plant Cell, 1989
- Changes in Photosynthetic Capacity and Photosynthetic Protein Pattern during Tomato Fruit RipeningPlant Physiology, 1987
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970
- Enzymatic synthesis of carotenes and related compoundsPublished by Walter de Gruyter GmbH ,1969
- Lycopersicon selections containing a high content of carotenes and colorless polyenes; the mechanism of carotene biosynthesis.1950