Abstract
1 5 -Hydroxytryptamine (5 -HT) stimulates the formation of two separate second messengers in the salivary gland of the blowfly. Activation of adenylate cyclase raises cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) whereas the hydrolysis of phosphatidylinositol (PI) is associated with an increase in calcium permeability. The possibility that these two signal pathways might be controlled by separate 5-HT receptors was studied by testing the specificity of 5-HT analogues and antagonists. 2 The parent compound 5-HT was found to stimulate both cyclic AMP formation and the related parameters of PI hydrolysis and calcium transport with similar dose-response relationships. 3 Certain analogues such as 4- and 5-fluoro-α-methyltryptamine were capable of raising cyclic AMP levels and stimulating fluid secretion but did not stimulate the hydrolysis of PI or the entry of calcium. 4 Other analogues, which had chloro or methyl substituents at the 5-position, were found to stimulate the hydrolysis of PI and the transport of calcium at much lower doses than those required to stimulate the formation of cyclic AMP. 5 Antagonists were also found to exert selective effects. Methysergide was a potent inhibitor of PI hydrolysis whereas cinanserin was far more selective in blocking the stimulatory effect of 5-HT on cyclic AMP formation. 6 It is concluded that 5-HT acts on two separate receptors, a 5-HT1 receptor acting through calcium and a 5-HT2 receptor which mediates its effects through cyclic AMP.