Oxygen isotope fractionation between cassiterite and water

Abstract
Analysis of stable isotopes in coexisting minerals has found wide application in the study of hydrothermal mineral deposits, particularly for elucidating the temperature and source of the fluid phase involved in mineralisation. For these purposes the temperature dependence of isotopic fractionation in several mineral-water systems has already been established (e.g. Friedman and O'Neil, 1977; O'Neil, 1986). Unfortunately, the oxygen isotope fractionation between cassiterite (SnO2) and water has not been adequately characterized, and this has hindered a full utilization of oxygen isotope data derived from studies of tin deposits (e.g. Harzer, 1970; Patterson et al., 1981; Kelly and Rye, 1979). Because of this situation, an attempt is made here to derive a relationship between temperature and the fractionation of oxygen isotopes (Δ) between quartz and cassiterite, based on the fractionations observed in naturally-occurring assemblages and independent temperature estimates.