• 1 January 2004
    • journal article
    • Vol. 6, S9-S19
Abstract
Since the inception of cryosurgery in the 1850s, landmark advances in chemistry, physics, materials science, and biology have culminated in the sophisticated cryosurgical devices currently in use. Effective cryosurgical tissue injury depends on four criteria: 1) excellent monitoring of the process; 2) fast cooling to a lethal temperature; 3) slow thawing; and 4) repetition of the freeze-thaw cycle. Meeting these criteria depends on understanding the imaging technology used to visualize the iceball, the type of cryogen used, the size of the probe, and probe arrangement. Third-generation cryosurgical equipment offers advantages over previous designs. These machines rely on argon for freezing but also use helium to warm probes and accelerate the treatment process, and they offer additional safety by being able to rapidly arrest iceball formation. Metallurgic advances have led to the development of thinner probes, which have been easily adapted to perineal templates similar to those used for prostate brachytherapy.