Optimization based automated curation of metabolic reconstructions
Open Access
- 20 June 2007
- journal article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 8 (1) , 212
- https://doi.org/10.1186/1471-2105-8-212
Abstract
Background: Currently, there exists tens of different microbial and eukaryotic metabolic reconstructions (e.g., Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis) with many more under development. All of these reconstructions are inherently incomplete with some functionalities missing due to the lack of experimental and/or homology information. A key challenge in the automated generation of genome-scale reconstructions is the elucidation of these gaps and the subsequent generation of hypotheses to bridge them. Results: In this work, an optimization based procedure is proposed to identify and eliminate network gaps in these reconstructions. First we identify the metabolites in the metabolic network reconstruction which cannot be produced under any uptake conditions and subsequently we identify the reactions from a customized multi-organism database that restores the connectivity of these metabolites to the parent network using four mechanisms. This connectivity restoration is hypothesized to take place through four mechanisms: a) reversing the directionality of one or more reactions in the existing model, b) adding reaction from another organism to provide functionality absent in the existing model, c) adding external transport mechanisms to allow for importation of metabolites in the existing model and d) restore flow by adding intracellular transport reactions in multi-compartment models. We demonstrate this procedure for the genome- scale reconstruction of Escherichia coli and also Saccharomyces cerevisiae wherein compartmentalization of intra-cellular reactions results in a more complex topology of the metabolic network. We determine that about 10% of metabolites in E. coli and 30% of metabolites in S. cerevisiae cannot carry any flux. Interestingly, the dominant flow restoration mechanism is directionality reversals of existing reactions in the respective models. Conclusion: We have proposed systematic methods to identify and fill gaps in genome-scale metabolic reconstructions. The identified gaps can be filled both by making modifications in the existing model and by adding missing reactions by reconciling multi-organism databases of reactions with existing genome-scale models. Computational results provide a list of hypotheses to be queried further and tested experimentally.Keywords
This publication has 27 references indexed in Scilit:
- Systematic assignment of thermodynamic constraints in metabolic network modelsBMC Bioinformatics, 2006
- Systems approach to refining genome annotationProceedings of the National Academy of Sciences, 2006
- Accelerating the reconstruction of genome-scale metabolic networksBMC Bioinformatics, 2006
- Identifying metabolic enzymes with multiple types of association evidenceBMC Bioinformatics, 2006
- Predicting genes for orphan metabolic activities using phylogenetic profilesGenome Biology, 2006
- Genome Sequence of Yersinia pestis KIMJournal of Bacteriology, 2002
- Identification of the tRNA-Dihydrouridine Synthase FamilyJournal of Biological Chemistry, 2002
- Identification of the Human Methylmalonyl-CoA Racemase Gene Based on the Analysis of Prokaryotic Gene ArrangementsJournal of Biological Chemistry, 2001
- In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental dataNature Biotechnology, 2001
- Computational method to assign microbial genes to pathwaysJournal of Cellular Biochemistry, 2001