Action of Chlorophyllase Purified from Rye Seedlings on Light-Harvesting Bacteriochiorophyll of Chromatophores and Spheroplasts from Rhodospirillum rubrum1

Abstract
The chlorophyllase [EC 3.1.1.14] purified from greened rye seedlings hydrolyzed the bacteriochlorophyll isolated from Rhodospirillum rubrum, but not the pigment bound to the membrane of chromatophores or spheroplasts from the bacterium. Acetone, if added at such concentrations that the bound bacteriochlorophyll would not be solubilized, enabled the enzyme to hydrolyze the bound pigment. The acetone concentrations required for half the maximum hydrolysis rates were 16% with chromatophores and 7% with spheroplasts. The enzymic hydrolysis of the bound bacteriochlorophyll in the presence of acetone removed bacteriochlorophyllide from the membrane, leaving its esterifying alcohol, possibly all-trans-geranylgeraniol, in situ. Washing of chromatophores with 30% acetone removed about 10% of the bound bacteriochlorophyll. The bound pigment remaining after washing was not hydrolyzed by the enzyme unless acetone was added. It seems possible that light-harvesting bacteriochlorophyll was mostly, if not all, bound to the inner surface of chromatophores (the outer surface of spheroplasts), having its esterifying alcohol residue buried in the membrane and its porphyrin residue emerging from the membrane into the inside solution; thus, chlorophyllase could not make contact with the ester linkage between the esterifying alcohol and porphyrin moieties of the pigment unless the esterifying alcohol residue was partly exposed.