Identification of Novel Formyl Peptide Receptor-Like 1 Agonists That Induce Macrophage Tumor Necrosis Factor α Production
- 1 August 2008
- journal article
- research article
- Published by Elsevier in Molecular Pharmacology
- Vol. 74 (2) , 392-402
- https://doi.org/10.1124/mol.108.046946
Abstract
Development of immunomodulatory agents that enhance innate immune responses represents a promising strategy for combating infectious diseases. In the present studies, we screened a series of 71 arylcarboxylic acid hydrazide derivatives for their ability to induce macrophage tumor necrosis factor α (TNF-α) production and identified six such compounds, including one compound previously shown to be a formyl peptide receptor (FPR/FPRL1) agonist. The two most potent compounds [compound 1, nicotinic acid [5-(3-bromophenyl)-2-furyl]methylene-hydrazide; compound 2, 4-fluoro-benzoic acid [5-(3-trifluoromethyl-phenyl)-2-furyl]-methylene-hydrazide] were selected for further analysis. These compounds induced de novo production of TNF-α in a dose- and time-dependent manner in human and murine monocyte/macrophage cell lines and in primary macrophages. These compounds also induced mobilization of intracellular Ca2+, production of reactive oxygen species, and chemotaxis in human and murine phagocytes. Induction of macrophage TNF-α production was pertussis toxin-sensitive, and analysis of the cellular target of these compounds showed that they were FPRL1-specific agonists and that this response was blocked by FPR/FPRL1 and FPRL1-specific antagonists. In addition, pharmacophore modeling showed a high degree of similarity for low-energy conformations of these two compounds to the current pharmacophore model for FPR ligands ( Mol Pharmacol68:1301-1310, 2005 ). Overall, these compounds represent novel FPRL1 agonists that induce TNF-α, a response distinct from those induced by other known FPR and FPRL1 agonists.Keywords
This publication has 35 references indexed in Scilit:
- The macrophage: Past, present and futureEuropean Journal of Immunology, 2007
- Formyl peptide receptors: A promiscuous subfamily of G protein-coupled receptors controlling immune responsesCytokine & Growth Factor Reviews, 2006
- Integration of Virtual Screening with High-Throughput Flow Cytometry to Identify Novel Small Molecule Formylpeptide Receptor AntagonistsMolecular Pharmacology, 2005
- SIH—a novel lipophilic iron chelator—protects H9c2 cardiomyoblasts from oxidative stress-induced mitochondrial injury and cell deathJournal of Molecular and Cellular Cardiology, 2005
- Systematic Identification of Antiprion Drugs by High-Throughput Screening Based on Scanning for Intensely Fluorescent TargetsJournal of Virology, 2005
- A Novel Nonpeptide Ligand for Formyl Peptide Receptor-Like 1Molecular Pharmacology, 2004
- Leukocyte antiadhesive actions of annexin 1: ALXR- and FPR-related anti-inflammatory mechanismsBlood, 2003
- The role of MyD88 and TLR4 in the LPS-mimetic activity of TaxolEuropean Journal of Immunology, 2001
- Differential Expansion of the N-Formylpeptide Receptor Gene Cluster in Human and MouseGenomics, 1998
- Benzylidene hydrazides as potential anticancer agentsJournal of Medicinal Chemistry, 1970