Displacement Structure: Theory and Applications
- 1 September 1995
- journal article
- review article
- Published by Society for Industrial & Applied Mathematics (SIAM) in SIAM Review
- Vol. 37 (3) , 297-386
- https://doi.org/10.1137/1037082
Abstract
In this survey paper, we describe how strands of work that are important in two different fields, matrix theory and complex function theory, have come together in some work on fast computational algorithms for matrices with what we call displacement structure. In particular, a fast triangularization procedure can be developed for such matrices, generalizing in a striking way an algorithm presented by Schur (1917) [J. Reine Angew. Math., 147 (1917), pp. 205–232] in a paper on checking when a power series is bounded in the unit disc. This factorization algorithm has a surprisingly wide range of significant applications going far beyond numerical linear algebra. We mention, among others, inverse scattering, analytic and unconstrained rational interpolation theory, digital filter design, adaptive filtering, and state-space least-squares estimation.Keywords
This publication has 144 references indexed in Scilit:
- Displacement structure approach to Chebyshev-Vandermonde and related matricesIntegral Equations and Operator Theory, 1995
- Fast state space algorithms for matrix Nehari and Nehari-Takagi interpolation problemsIntegral Equations and Operator Theory, 1994
- Circulants, displacements and decompositions of matricesIntegral Equations and Operator Theory, 1992
- Conjugation, interpolation and model-matching inH∞International Journal of Control, 1989
- Inverse scattering and minimal partial realizationsInternational Journal of Control, 1988
- Fast inversion algorithms of Toeplitz-plus-Hankel matricesNumerische Mathematik, 1988
- QR factorization of Toeplitz matricesNumerische Mathematik, 1986
- Fast Toeplitz orthogonalizationNumerische Mathematik, 1984
- Fonctions méromorphes dans le cercle-unité et leurs séries de TaylorAnnales de l'institut Fourier, 1958
- Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind.Journal für die reine und angewandte Mathematik (Crelles Journal), 1917