Neutron-Induced Metallic Spike Zones in GaAs
- 1 January 1971
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Nuclear Science
- Vol. 18 (6) , 21-30
- https://doi.org/10.1109/TNS.1971.4326409
Abstract
The metallic spike model for neutron damage has been shown to account for the observed anomalous infrared absorption in GaAs. In this paper, the electrical properties of semiconductors containing metallic spikes are explored. The metallic zones are shown to act as deep potential wells which trap carriers from the host semiconductor energy bands. The component of mobility associated with carrier scattering from the depletion region surrounding charged spikes is estimated as a function of temperature, including the temperature dependence of the trapped charge. Hall measurement data taken before and after neutron irradiation of n-type GaAs are compared with theory and good agreement is obtained. It is proposed that the high field trapping and slow release of electrons observed in neutronirradiated Gunn diodes is associated with the presence of metallic spikes. Hot electrons in high field domains penetrate the electrostatic barrier and are trapped within the spikes. When the low field condition is restored, excess electrons return to the host semiconductor matrix. The rate of escape of excess electrons is estimated from considerations of the processes of emission over and tunneling through the electrostatic barrier. Measurements of the temperature - dependent decay rates of the excess charge are obtained from neutron-irradiated Gunn diodes. Two decay rates were obtained at each temperature. The shorter decay time shows a temperature dependence consistent with a quantum tunneling mechanism. The longer decay time shows a stronger temperature dependence which is in qualitative agreement with emission of electrons over the barrier.Keywords
This publication has 20 references indexed in Scilit:
- Effects of Neutron Irradiation on the Optical Properties of Thin Films and Bulk GaAs and GaPJournal of Applied Physics, 1970
- Neutron Displacenent Effects in Epitaxial Gunn DiodesIEEE Transactions on Nuclear Science, 1970
- Infrared Absorption in Neutron-Irradiated GaAsJournal of Applied Physics, 1969
- Carrier Scattering from Defects in Neutron-Bombarded SemiconductorsIEEE Transactions on Nuclear Science, 1968
- Theory of Anomalous Infrared Attenuation in Neutron-Irradiated Compound SemiconductorsJournal of Applied Physics, 1967
- Effect of Fast-Neutron Irradiation on Optical Attenuation in Compound SemiconductorsIEEE Transactions on Nuclear Science, 1967
- Anomalous Mobility Effects in Some Semiconductors and InsulatorsJournal of Applied Physics, 1962
- The question of radiation-induced phase changes∗Journal of Physics and Chemistry of Solids, 1958
- Radiation Damage Experiments in III-V-CompoundsPhysical Review B, 1957
- Hall Effect and Conductivity in Porous MediaJournal of Applied Physics, 1956